Új hozzászólás Aktív témák
-
aAron_
őstag
válasz
Jester01 #4136 üzenetére
értem, akkor leírom pontosabban mit akarok kiszámolni, hátha van valami ötleted (meg kedved segíteni). sajnos most úgy érzem még nem elég a tudásom egy ilyen probléma megoldásához.
szóval az egész dolog lényege az, hogy X db részvény (ált 40<X<50) egy portfólióban való optimális eloszlását megtaláljuk. ez akkor a legjobb ha a sharpe ratio a lehető legnagyobb. ezt az alábbi módon kell kiszámolni:
sharpe_ratio=sqrt(250)*((avg_daily_rets - riskfree_daily_rets)/std_dev)
avg_daily_rets nem más mint a porfólió átlagos napi hozama pl.: 0.0002364 = 0.02364%
riskfree_rets az elérhető legnagyobb kockázatmentes napi hozam (lehet akár 10 éves lejáratú amerikai kötvény, vagy akár banki kamat, bár ez utóbbi kevésbé)
std_dev pedig standard deviation of the portfolio, tehát a szórása a napi hozamoknak (ez a kockázat a gyakorlatban)
(250 a kereskedési napok száma egy évben)
adatok amivel dolgozni kell kb így néznek ki (napi igazított árfolyam, mintha mindegyik 1-től indulna az 1. napon):
első, második, harmadik, negyedik, ..., n-edik részvény
1. 1.00000 1.00000 1.00000 1.00000 ... 1.00000
2. 0.99820 0.99930 1.00090 0.99130 ... 1.00010
3. 1.00150 0.99750 1.00140 1.00300 ... 1.00060
3. 1.00510 0.99970 1.00080 1.00380 ... 1.00070
5. 1.00830 1.00240 1.00160 1.00360 ... 1.00080
6. 1.00910 0.99050 1.00270 1.01440 ... 1.00100
7. 1.00900 0.98940 0.99970 1.01890 ... 1.00110
8. 1.00830 0.99060 0.99930 1.02240 ... 1.00170
.
.
.n-edik 1.29590 1.22330 1.13880 1.40270 ... 1.06800
napeddig úgy számoltam (X<=4 esetén), hogy leteszteltem az összes lehetőséget
egyik lehetőség pl.: első részvényt vettem 0.5x, másodikat 0.3x, harmadikat 0.1x, negyediket 0.1x és így kiszámoltam minden napra a porfólió értékét
ebben az esetben (ha az első 4 részvénnyel számolunk csak) a portfólió árfolyama a 2. nap= 0.5x0.99820+0.3x0.99930+0.1x1.00090+0.1x0.99130=0.99811
ha ez az érték megvan minden napra abból már ki tudom számolni minden egyes nap hozamát és tudok vele dolgozni
csak onnan tudom, hogy sokkal több részvény optimális allokációját is ki lehet számolni, hogy többen is több mint 500 részvénnyel dolgoztak (külföldi fórumon), és olyan algoritmust írtak amely egy évre visszamenőleges adatból kiszámolta az optimális allokációt és sharpe ratio-t, mégpedig sokkal nagyobb pontossággal mint 0.01, elmondásuk szerint egy viszonylag lassú gépen kevesebb mint 20 perc alatt lefutott az egész.
remélem érthető és nem magyaráztam túl semmit sem
Új hozzászólás Aktív témák
● olvasd el a téma összefoglalót!
● ha kódot szúrsz be, használd a PROGRAMKÓD formázási funkciót!
- Elindult a Call of Duty: Black Ops 7 bétájának korai hozzáférése
- Számtech boltosok memoárjai, azaz amikor kiborulunk...
- Suzuki topik
- Apple iPhone 17 Pro Max – fennsík
- Milyen RAM-ot vegyek?
- PlayStation 5
- Mobil flották
- Ismerkedés a Zyxel NSA325 v2-vel
- Ubiquiti hálózati eszközök
- BestBuy topik
- További aktív témák...
- HIBÁTLAN iPhone 11 Pro 256GB Space Grey -1 ÉV GARANCIA - Kártyafüggetlen, MS3173, 100% Akkumulátor
- Apple iPhone 13 Pro 128GB,Adatkabel,12 hónap garanciával
- BESZÁMÍTÁS! ASROCK B650M R5 7600X 32GB DDR5 2TB SSD RX 6900XT 16GB Zalman Z1 PLUS GIGABYTE 850W
- Xiaomi 11T Pro 256GB, Kártyafüggetlen, 1 Év Garanciával
- HIBÁTLAN iPhone 13 mini 128GB Green -1 ÉV GARANCIA - Kártyafüggetlen, MS3336
Állásajánlatok
Cég: Laptopműhely Bt.
Város: Budapest
Cég: PCMENTOR SZERVIZ KFT.
Város: Budapest